Inside the Briefcase

Solving the steam_api.dll Missing Issue

Solving the steam_api.dll Missing Issue

Usually this error is faced by the gamers -...

How Security in Tech is Being Reinforced

How Security in Tech is Being Reinforced

In an increasingly digital world, security has become a...

2022 Business Spend Management Benchmark Report

2022 Business Spend Management Benchmark Report

Read the 2022 Coupa Benchmark Report to explore 20...

Cloud Security: Understanding “Shared Responsibility” … and Keeping Up Best Security Practices

Cloud Security: Understanding “Shared Responsibility” … and Keeping Up Best Security Practices

Cloud computing has been around for many years now,...

Webcast: HOW TO SCALE A DATA LITERACY PROGRAM AT YOUR ORGANIZATION

Webcast: HOW TO SCALE A DATA LITERACY PROGRAM AT YOUR ORGANIZATION

Join data & analytics leaders from Starbucks, Cardinal Health,...

Building Time Series Analysis on Snowflake with a Semantic Layer

September 15, 2021 No Comments

AtScale

In a recent post, we discussed how a semantic layer helps scale data science and enterprise AI programs. With massive adoption of Snowflake’s cloud data platform, many organizations are shifting analytics and data science workloads to the Snowflake cloud. Leveraging the integration of AtScale’s semantic layer to Snowflake, data teams can position the data scientist teams to spend less time data wrangling and more time creating sophisticated models that create value for their organizations.

Predictions based on time-series analysis are one of the most common products delivered by data science teams. This post focuses on how AtScale + Snowflake create a powerful combination in this common use case.

READ FULL ARTICLE HERE

 

 

 

 

Tags: , DATA and ANALYTICS , Featured Articles, Featured Blogs, Featured White Papers, Top Stories

Sorry, the comment form is closed at this time.

ADVERTISEMENT

Gartner